

GENERAL INSTRUCTIONS :-1. All questions are compulsory.

CODE:- AG-11

- 2. The question paper consists of 34 questions divided into four sections A,B,C and D. Section A comprises of 8 question of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 10 questions of 3 marks each and Section D comprises of 10 questions of 4 marks each.
- 3. Question numbers 1 to 8 in Sections A are multiple choice questions where you are to select one correct option out of the given four.
- 4. There is no overall choice. However, internal choice has been provided in 1 question of two marks, 3 questions of three marks each and 2 questions of four mark each. You have to attempt only one lf the alternatives in all such questions.
- 5. Use of calculator is not permitted.
- 6. Please check that this question paper contains 6 printed pages.

МА	THEMA TICS	CLASS X	-	(SA-1)								
Time	Time : $3 to_3 \frac{1}{4}$ HoursMaximum Marks : 90											
	SUMMATIVE ASSESSMENT –I (2013)											
		SECTION A										
Q.1	If the HCF of 55 a	nd 99 is expressib	le in the fo	rm 55 m - 99, then								
	the value of m is											
	(A) 4	(B) 2 (C) 1	(D)	3 Ans. B								

Q.2 The quadratic polynomial whose sum of zeroes is 3 and product of zeroes is -2 is (A) $x^2 + 3x - 2$ (B) $x^2 - 2x + 3$ (C) $x^2 - 3x + 2$ (D) $x^2 - 3x - 2$ Ans. D Q.3 If in $\triangle ABC$ and $\triangle DEF$, $\frac{AB}{DE} = \frac{BC}{ED}$, then they will be similar triangles if (A) $\angle B = \angle E$ (B) $\angle A = \angle D$ (C) $\angle B = \angle D$ (D) $\angle A = \angle F$ Ans. C **O.4** If $cos(40^\circ + A) = sin 30^\circ$, then value of A is (A) 30° (B) 40° (C) 60° (D) 20° Ans. D 0.5 If $3\cos\theta = 2\sin\theta$, then the value of $\frac{4\sin\theta - 3\cos\theta}{2\sin\theta + 6\cos\theta}$ is (A) $\frac{1}{8}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{1}{4}$ Ans. B **Q.6** Given that LCM(91, 26) = 182, then HCF(91, 26) is (A) 13 (B) 26 (C) 7 (D) 9 Ans. A **O.7** One equation of a pair of dependent linear equations is -5x + 7y= 2, the second equation can be (A) 10x + 14y + 4 = 0 (B) -10x - 14y + 4 = 0(C) - 10x + 14y + 4 = 0 (D) 10x - 14y = -4Ans. D **Q.8** If $\cos cc\theta - \cot \theta = \frac{1}{2}$, then value of $(\cos ec\theta + \cot \theta)$ is

	(A) 1.		(B) 2	,	(C)) 3	(]	D) 4		OR
	<mark>Ans. C</mark>									Write the condition to be satisfied by q so that a rational number
			2	SECTIO	NB					$\frac{p}{q}$ has a terminating decimal expansion. Ans: rational number
Q.9	If $\tan A = \frac{\tan A + 1}{1 - \tan A}$	$=\frac{1}{2}$ and - tan B A tan B	tanB=	$=\frac{1}{3}$, by ve that	using t A + B	tan(A 8 = 45°	+ B) =		Q.12	$\frac{p}{q}$ if q is in the form of $2^m \times 5^n$.
Q.10	Calculate	the mode	of the	followi	ng data					In the figure below, PQIICD and PRIICB. Prove that $\overline{QD} = \overline{RB}$.
	Classes	0-10 1	0-20	20-30	30-40	40-50	50-60	60-70		C
	f	5 1	0	18	30	20	12	5		$D \xrightarrow{P} B$
	Ans. Mod	lal class :	30 – 40 30 – 18	$f_0 = 18$	$f_1 = 30$	$f_2 = 20$, h=10	•		$A = Ans. In \Delta ACD, PQ CD$
	Mode =	$\frac{30+2\times3}{2\times3}$	30 - 18	3 −20 ×	10 = 35.	45				$\frac{AQ}{QP} = \frac{AP}{PQ}$ (Basic proportionality theorem) (i)
Q.11	Without	actually	v per	forming	g the	long	divisio	n, state		
	whether	$\frac{13}{3125}$ h	as ter:	minatir	ng deci	mal ex	pansio	Por not.		$\frac{AR}{AR} = \frac{AP}{AR} \qquad (ii)$
	13 Sol. 312	$\frac{13}{25} = \frac{13}{2^0 \times 10^{10}}$	3 5 ⁵ ·	This,	show	vs tha	at the	prime		RB PC From (i) and (ii)
	factorizat	tion of t	<mark>he de</mark>	nomina	ator is	of the	form	<mark>2^m × 5ⁿ.</mark>		$\Rightarrow \frac{AQ}{RR} = \frac{AR}{RR}$
	<mark>Hence, it</mark>	has term	ninatir	n <mark>g decir</mark>	<mark>nal exp</mark>	ansion			Q.13	Find the median of the following data : 5, 17, 23, 14, 29, 11,
Target	Mathematics	s by- Agyat (Gupta ;	Resi.: D-79	Vasant Viha	r; Office : 8	9-Laxmi bai	colony	Targe	t Mathematics by- Agyat Gupta; Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony

Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

	$\sin(A-B) = \frac{1}{2}$
	$A - B = 30^{\circ}$ — (1) $A + B = 60^{\circ}$ — (2)
	Solving (1) and (2) we get A = 45° and B = 15°
2.16	The sum of the numerator and denominator of a fraction is 12. If
	1 is added to both the numerator and the denominator the fraction
	becomes $\frac{3}{4}$. Find the fraction.
	Ans. Let the fraction be $\frac{x}{y}$
	According to the question
	x + y = 12
	$\frac{x+1}{y+1} = \frac{3}{4} \Rightarrow 4x - 3y = -1$
	Solving and getting $x = 5$, $y = 7$ The fraction is $\frac{5}{7}$
	OR
	A man travels 600 km partly by train and partly by car. It takes 8
	hours and 40 minutes if he travels 320 km by train and the rest by
	car. It would take 30 minutes more if he travels 200 km by train

and the rest by car. Find the speed of the train and the car

Let the speed of the train be $x \text{ km/hr}$ Let the speed of the car be $y \text{ km/hr}$
separately. Ans.
ATQ: $\frac{320}{x} + \frac{280}{y} = 8\frac{40}{60} = \frac{26}{3}$
$\frac{160}{x} + \frac{140}{y} = \frac{13}{3} \dots (1) \times 1$
$\frac{200}{x} + \frac{400}{y} = 9\frac{10}{60} = \frac{55}{6}$
$\frac{40}{x} + \frac{80}{y} = \frac{11}{6} \dots (2) \times 4$
$\frac{\frac{160}{x}}{\frac{160}{x}} + \frac{\frac{140}{y}}{\frac{320}{y}} = \frac{\frac{13}{3}}{\frac{44}{6}}$
$\frac{-180}{y} = \frac{18}{6}$
$\therefore y = 60$
$\frac{40}{x} + \frac{8\cancel{0}}{6\cancel{0}} = \frac{11}{6}$
$\frac{40}{x} = \frac{11}{6} - \frac{8}{6} = \frac{3}{6} = \frac{1}{2}$
$\therefore x = 80$
Speed of the train is 80 km/hr Speed of the car is 60 km/hr

Q.17	Prove	that	$\frac{1+\cos A}{\sin A}$	$+\frac{\sin A}{1+\cos A}$	= 2 cos <i>ecA</i>	<mark>Ans.</mark>
	LHS =	$\frac{(1+\cos A)^2}{\sin A (1 + e^{-2})^2}$	+ sin ² A + cosA)			
	$=\frac{1+2c}{c}$	$\cos A + \cos^2 \cos A$ $\sin A (1 + \cos^2 A)$	$A + \sin^2 A$ $\cos A$)			
	$=\frac{2(1)}{\sin A}$	$(1 + \cos A)$ $(1 + \cos A)$				
	$=\frac{2}{\sin A}$	=2 cosecA	A=RHS.			
Q.18	Find the	e zeroes o	f the quadr	atic polync	$mial x^2 + 5x + 6$	and and
	verify th	ne relations	ship between	n the zeroe	s and the coeffi	cients
	Ans. f(:	$x) = x^2 + 5x$	+6 = (x+3)	(x + 2) (x + 2)		
	zeroes	of polynon	nial arc -3 a	and -2		
	Sum of	zeroes = -	5 (i)			
	coefficies coefficier	$\frac{\text{nt of } x}{\text{nt of } x^2} = -$	$\frac{5}{1} = -5$	(ii)		
			(i)	= (ii)		
	Product	of zeroes =	$(-3) \times (-3)$	2) = 6	(iii)	

	$\frac{\text{Constant term}}{\text{Coefficient of } x^2} = \frac{6}{1} = 6 (iv)$ $(iii) = (iv)$		$g(x) = 4x^2 + 7x + 2$
Q.19	On dividing the polynomial $4x^4 - 5x^3 - 39x^2 - 46x - 2$ by the polynomial g(x), the quotient and remainder were $x^2 - 3x - 5$ and	Q.20	Check whether 4^n can end with digit zero for any natural number n.ANS If a number 4^n , for any natural number n ends with digit 0, then it is divisible by 5.
	-5x+8 respectively. Find $g(x)$. Ans.		The prime factorization of 4 ⁿ must contain the prime factor 5.
	$p(x) = 4x^4 - 5x^3 - 39x^2 - 46x - 2$		This is not possible because prime factors of 4 ⁿ is 2 only and the uniqueness of
	$q(x) = x^2 - 3x - 5$		Fundamental theorem of arithmetic guarantees that there are no other prime in
	$\mathbf{r}(x) = -5x + 8$		factorisation of 4".
	$g(x) = \frac{p(x) - r(x)}{q(x)}$		OR
	$=\frac{4x^4 - 5x^3 - 39x^2 - 41x - 10}{2}$		Show that the square of any positive odd integer is of the form $8m + 1$, for some integer m. ANS
	$x^2 - 3x - 5$ $4x^2 + 7x + 12$		Let 'n' be a positive odd Integer Then $n = 4q + 1$ or $4q + 3$
	$4x^4 - 5x^3 - 39x^2 - 41x - 10$		$n^2 = (4q+1)^2$ or $(4q+3)^2$
	$x^2 - 3x - 5$ $4x^4 - 12x^3 - 20x^2$		$=8(2q^2+q)+1$ or $8(2q^2+3q+1)+1$
	$7x^3 - 19x^2 - 41x - 10$		$= 8m + 1$ where $m = (2q^2 + q)$ or $m = 2q^2 + 3q + 1$ Hence $n^2 = 8m + 1$ for some integer m.
	$7x^3 - 21x^2 - 35x$	Q.21	The mean of the following data is 53, find the missing
	$2x^2 - 6x - 10$		frequencies.
	$\frac{2x^2 - 6x - 10}{0}$		Classes 0-20 20-40 40-60 60-80 80-100 Total

No. of	15	<i>t</i> ₁ 2	1 f ₂	17	100		$f_2 = 42$	7 - 29 = 18					
Students						Q.22	² PQRS	is a trape	zium w	vith PQ	ISR. Diag	onals Pl	R and SQ
Ans.							interse	ect at M. Δ	PMS ~	ΔQMF	R . Prove t	hat PS	= QR. <mark>Ans.</mark>
Age (in years)	No.	of people <u>fi</u>	Mid values x _i	j	f _i X _i 5				2 0				6
0-20 20-40		15 £	10	3	150 10 £			1	-	\backslash			
$\frac{20}{40-60}$		21	50	1	050		s	1	30	$\frac{1}{R}$			
60 - 80		f_2	70	7	10 f ₂		In ΔN	MSR and ΔM	QP				
80 - 100		17	90	1	530		/1 = /	/2					
Total		100		(2730+	$-30 f_i + 70$		$\angle 3 = 2$	_ _ ⁄4					
$53 + f_1 + f_2 = 1$ $f_1 + f_2 = 47$ $2730 + 30 f_1 + 100$ $5300 - 2730 = 100$ $30 f_1 + 70f_2 = 100$ $3f_1 + 7f_2 = 116$ $f_2 = \frac{116}{4} = 29$	100 <u>(1)</u> $+70 f_2 =$ $= 30 f_1 +$ 2570 257 - 1 9	= 53 - 70 <i>f</i> 2 (2)					$ \begin{array}{c} \vdots \\ \Rightarrow \\ \Rightarrow \\ Also, \Delta \\ From \\ \Rightarrow \\ \Rightarrow \end{array} $	$\Delta MSR \sim \Delta N$ $\frac{MS}{MQ} = \frac{MR}{MP}$ $\frac{MS}{MR} = \frac{MQ}{MP}$ $MR \sim \Delta QMR$ $MR = 0$ $MR = 0$ $MR = 0$ $MR = 0$	AQP <u>MQ</u> MP	$\Rightarrow = \frac{PM}{QM}$	$\begin{bmatrix} A \\ (1) \\ \frac{PM}{QM} = \frac{MS}{MR} \end{bmatrix}$ (3)	A simila: = <u>Ps</u> QR	rity] (2)
$f_1 + f_2 = 47$							From	$(1), (3) \frac{MS}{MR}$	- = 1	\Rightarrow	MS=MR	(4)	

 Target Mathematics by- Agyat Gupta ;
 Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

 Ph. :2337615; 4010685®, 2630601(O)
 Mobile : <u>9425109601;</u> 9425110860;9425772164(P)

	$\Rightarrow \frac{CR}{RB} = 1$
	\Rightarrow CR = RB ANS
	In ΔACD and ΔAEC
	$\angle ACD = \angle AEC = 90^{\circ}$
	$\angle CAD = \angle EAC$ [common]
	$\therefore \Delta ACD \sim \Delta AEC$ [AA similarity]
	$\therefore \frac{AC}{AC} = \frac{AD}{AC}$
	$\rightarrow AC^2 - AEAD$
0.24	For which values of a and b does the following pair of linear
C	aquations have an infinite number of solutions?
	equations have an infinite number of solutions?
	(a-b)x + (a+b)y = 3a+b-2; $2x+3y = 7$.
	Ans. a = 5, b = 1
	SECTION D
Q.25	In Figure, BL and CM are medians of $\triangle ABC$ right angled at A.
	Prove that $4(BL^2 + CM^2) = 5BC^2$. C L A Ans.

	inter	rval					
	Freq	uency	3	5	9	12	6
		Class	f	Less th	an cf Mor	re cf	<u> </u>
		50 - 60	3	3	3	5	
		60 - 70	5	8	3	2	
		70 - 80	9	17	2	27	
		80 - 90	12	29	1	.8	
	Ans.	90 - 100	6	35	(6	
	Corre	ect Less tl	nan ogive				
	<mark>Corre</mark>	ect More	than ogive	e			
	Corre	ected Loc	ated medi	an			
Q.28	Divid	le $2x^4$ –	$9x^3 + 5$	$x^2 + 3x -$	-8 by x^2	-4x + 1	and verify
	the		divisior	1	algorit	hm.	Ans.
	$(2x^4)$	$-9x^3 + 5x^3$	$x^2 + 3x - 8$) $\div (x^2 - 4)$	(x+1) give	es	
	$2x^2 -$	x-1 as c	quotient a	ınd –7 as	remainde	r	
	Verif	ication, (Quotient	× Divisc	r) + Rema	inder = Di	ivident
Q.29	An a	rmy con	tingent o	of 616 me	mbers is t	o march b	pehind
	and a	army bai	nd of 32 1	members	in a para	de. The tw	vo groups
	are to	o march	in the same	me numb	per of colu	imns. Wh	at is the
	maxi	imum nu	imber of	columns	in which	tney can	march?
	ANS						

	Let x be the maximum number of columns in which the two groups can march.
	By Euclid's division algorithm
	$616 = 32 \times 19 + 18$
	$32=8 \times 4 + 0$ HCF (616, 32) = 8
	Hence the maximum number of columns in which they can march is 8. An
	s: 8 columns
Q.30	If $\sec \theta = x + \frac{1}{4x}$, then prove that $\sec \theta + \tan \theta = 2x$ or $\frac{1}{2x}$.
	Ans. $\sec^2 \theta - 1 = \tan^2 \theta$
	$\tan^2 \theta = \left(x - \frac{1}{4x}\right)^2$
	$\tan\theta = \pm \left(x - \frac{1}{4x}\right)$
	$\sec\theta + \tan\theta = x + \frac{1}{4x} + x - \frac{1}{4x} = 2x$
	$\sec\theta + \tan\theta = x + \frac{1}{4x} - x + \frac{1}{4x} = \frac{1}{2x}$
	OR
	Simplify :
	$\cot(90^\circ - \theta) \tan \theta - \cos ec(90^\circ - \theta) \sec \theta + \cos^2(50^\circ + \theta) + \cos^2(40^\circ - \theta)$
	$\sin 12^{\circ} \cos 15^{\circ} \sec 78^{\circ} \cos ec 75^{\circ} + \tan 15^{\circ} \tan 37^{\circ} \tan 53^{\circ} \tan 75^{\circ}$
	Ans.

	construction)]	
	\Rightarrow DF ² 3 = AC ²	$[\therefore AB^2 + BC^2 = AC^2]$
	(Given)]	
	\Rightarrow DF = AC(i)	
	Thus, in Δ ABC and Δ DEF	F, we have
	AB = DE, BC = EF	[By construction]
	And $AC = DF$	[From equation (i)]
	$\therefore \Delta ABC \cong \Delta DEF$	[By SSS criteria of
	congruency]	
	$\Rightarrow \angle \mathbf{B} = \angle \mathbf{E} = 900$	
	Hence, $\triangle ABC$ is a right tria	angle, right angled at B.
2.32	If α, β are the zeroes of the	quadratic polynomial
	$x^2 - 6x + a$ then find the value	of 'a' if $3\alpha + 2\beta = 20$.
	ans :	
	$p(x) = x^2 - 6x + a$	
	-b = 6 (1)	
	$\alpha + \beta = \frac{\alpha}{a} = \frac{1}{1} \qquad (1)$	Solving $\beta = -2$, $\alpha = 8$
	$3\alpha + 2\beta = 20$ (ii)	$\alpha\beta = a$
	(i) × 3	$(-2) \times 8 = a$
	$3\alpha + 3\beta = 18$ (iii)	\Rightarrow a = -16
	OR	
	If two zeroes of the polynomial i	$p(\mathbf{x}) =$

	x^{4} -	- 6.	$x^{3} - 2$	$26x^2$	+1	38x	c — 3	35 are	2	$2 \pm \sqrt{3}$, fir	nd t	he other
	zeroes. ANS:												
	$(x^4 - 6x^3 - 26x^2 + 138x - 35) \div (x^2 - 4x + 1)$												
	Sum = 4 Product = 1 \Rightarrow Polynomial of is x-+4x+1 \Rightarrow zeroes are 7, -5 $= x^2 - 2x - 35$ = (x-7)(x+5)												
Q.33	Find the mean of the following data using step up deviation method .												
	C.I	25	5-30	30-3	5	35-	40	40-45		45-50	50-	55	55-60
	f 14 22			16		6		5	3		4		
	class x_i f_i $d_i = x_i - a$ $u_i = \frac{x_i - a}{b}$ $f_i u_i$									$f_i u_i$			
	25 - 3	30	27	.5	1	14 - 15			- 3			- 42	
	30 - 3	35	32	.5	1	22	- 10 - 2				- 44		
	35 - 4	10	37	.5	1	16		- 5	- 1			- 16	
	40 - 4	15	42	.5 = a		6		0	0			0	
	45 - 5	50	47	.5		5		5		1		5	
	50 - 5	55	52	.5		3		10		2		6	
	55 - 6	50	57	.5		4		15		3			12
	a = 4	2.5, 1	h = 5		≥fi	= 70	I				I	Σf_i	$u_i = -79$
	$\overline{x} = a$	+ h ·	$\frac{\Sigma f_i u_i}{\Sigma f_i}$										
	:	= 42	2.5 + 5	$\times \frac{(-79)}{70}$	<u>))</u>								
		= 30	6.86										
Q.34	Prov	e th	nat:										

